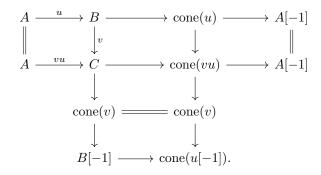
Homological algebra exercise sheet Week 12

1. The goal of this exercise is to complete the proof showing that $K(\mathcal{A})$ is triangulated. Recall that to prove (TR4) one needs to show the following diagram commutes and that $(\operatorname{cone}(u), \operatorname{cone}(vu), \operatorname{cone}(v))$ is an exact triangle:



The only part remaining to show that $(\operatorname{cone}(u), \operatorname{cone}(vu), \operatorname{cone}(v))$ is indeed a triangle. By definition of triangles in $\mathcal{K}(\mathcal{A})$, it suffices to show the commutativity of the following diagram in $\mathcal{K}(\mathcal{A})$, plus that γ is a homotopy equivalent in $\mathbf{Ch}((\mathcal{A}))$. We have defined the maps $v \oplus \operatorname{id}, \operatorname{id} \oplus u, \pi_B, \gamma$ in the lecture and one may easily verify every required condition except for the following:

- (a) $\gamma \circ (\mathrm{id} \oplus u)$ is homotopic to ι .
- (b) γ defines a homotopy equivalence between the two chain complexes.

As mentioned one may construct γ as the natural inclusion and the homotopy inverse of γ as

$$g:(c,a',b',a'')\to (c,u(a')+b').$$

By representing the morphisms as matrices, find the suitable chain homotopies and show (a) and (b).

Hint: You may need the matrix corresponding to the boundary map of

$$(C \oplus A[-1]) \oplus (B[-1] \oplus A[-2]), \text{ which is given by } \begin{pmatrix} \partial & -vu & -v & 0 \\ 0 & -\partial & 0 & \mathrm{id} \\ 0 & 0 & -\partial & u \\ 0 & 0 & 0 & \partial \end{pmatrix}.$$
The other matrices you need should be rather trivial

The other matrices you need should be rather trivial

- 2. Let S be a locally small multiplicative system of morphisms in a category \mathcal{C} . Let $q:\mathcal{C}\to S^{-1}\mathcal{C}$ be the localization constructed in class.
 - (a) Let Z be a zero object in \mathcal{C} . Show that q(Z) is a zero object. Deduce that for every X in \mathcal{C} we have

$$q(X) \cong 0 \iff S \text{ contains the zero map } X \stackrel{0}{\to} X.$$

(b) Assume that the product $X \times Y$ exists in \mathcal{C} . Show that

$$q(X \times Y) \cong q(X) \times q(Y)$$

in $S^{-1}\mathcal{C}$.

- (c) Assume now that C is an additive category. Show that $S^{-1}\mathcal{C}$ is also additive and that q is an additive functor.
- 3. Let R be a commutative ring and $S \subseteq R$ be multiplicatively closed subset. Let **mod-**R be the category of R-modules. Let Σ be the collection of all morphisms $A \to B$ in **mod**-R such that the induced morphism on localizations $S^{-1}A \to S^{-1}B$ is an isomorphism. Show that $\mathbf{mod}\text{-}S^{-1}R$ is a localizing subcategory of \mathbf{mod} -R and

$$\operatorname{mod}$$
- $S^{-1}R \cong \Sigma^{-1}\operatorname{mod}$ - R .

4. Let \mathcal{A} be an abelian category. An abelian subcategory \mathcal{B} of \mathcal{A} is called a Serre subcategory if it is closed under sub-objects, quotients, and extensions. In other words, this means that for every short exact sequence

$$0 \to A' \to A \to A'' \to 0$$

in \mathcal{A} , the object A is in \mathcal{B} if and only if both A' and A'' are in \mathcal{B} .

Suppose that \mathcal{B} is a Serre subcategory of \mathcal{A} and let Σ be the family of all morphisms f in \mathcal{A} with $\ker(f)$ and $\operatorname{coker}(f)$ in \mathcal{B} .

- (a) Show that Σ is a multiplicative system in \mathcal{A} . We write \mathcal{A}/\mathcal{B} for the localization $\Sigma^{-1}\mathcal{A}$ (provided that it exists).
- (b) Show that $q(X) \cong 0$ in \mathcal{A}/\mathcal{B} if and only if X is in \mathcal{B} .
- (c) Assume that \mathcal{B} is a small category, and show that Σ is locally small. This is one case in which $\mathcal{A}/\mathcal{B} = \Sigma^{-1}\mathcal{A}$ exists.

- (d) Show that \mathcal{A}/\mathcal{B} is an abelian category and that $q:\mathcal{A}\to\mathcal{A}/\mathcal{B}$ is an exact functor.
- (e) Let S be a multiplicative subset of a commutative ring R (in the usual sense), and let $\mathbf{mod}_S R$ be the full subcategory of R-modules A such that $S^{-1}A \cong 0$. Show that $\mathbf{mod}_S R$ is a Serre subcategory of \mathbf{mod} -R. Conclude that \mathbf{mod} - $S^{-1}R \cong \mathbf{mod}$ - $R/\mathbf{mod}_S R$.
- 5. The goal of this exercise is to show that $\mathbf{K}(\mathrm{Ab})$ is not abelian. Let \mathcal{K} be a triangulated category.
 - (a) Let

$$A \to B \to C \to TA$$

and

$$A' \to B' \to C' \to TA'$$

be exact triangles in K. Show that there is an exact triangle

$$A \oplus A' \to B \oplus B' \to C \oplus C' \to T(A \oplus A').$$

(b) Let

$$A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} TA$$

be a triangle in K and assume that w is zero. Deduce from (a) that

$$B \cong A \oplus C$$
.

Hint: Show that the triangles

$$A \stackrel{\mathrm{id}}{\to} A \to 0 \to TA$$

and

$$0 \to C \stackrel{\mathrm{id}}{\to} C \to 0$$

are exact using (TR4), or any other way. Conclude using (TR3).

(c) Let $f: A \to B$ be a monic in \mathcal{K} . Deduce from (b) that

$$B \cong A \oplus C$$

for some C in \mathcal{K} .

(d) We now restrict to $\mathcal{K} = \mathbf{K}(Ab)$. Show that $\mathbf{K}(Ab)$ is not abelian by considering the map

$$\mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$$
.